3.1484 \(\int \frac{1}{x^2 \left (1-x^8\right )} \, dx\)

Optimal. Leaf size=102 \[ -\frac{\log \left (x^2-\sqrt{2} x+1\right )}{8 \sqrt{2}}+\frac{\log \left (x^2+\sqrt{2} x+1\right )}{8 \sqrt{2}}-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{\tan ^{-1}\left (1-\sqrt{2} x\right )}{4 \sqrt{2}}-\frac{\tan ^{-1}\left (\sqrt{2} x+1\right )}{4 \sqrt{2}}+\frac{1}{4} \tanh ^{-1}(x) \]

[Out]

-x^(-1) - ArcTan[x]/4 + ArcTan[1 - Sqrt[2]*x]/(4*Sqrt[2]) - ArcTan[1 + Sqrt[2]*x
]/(4*Sqrt[2]) + ArcTanh[x]/4 - Log[1 - Sqrt[2]*x + x^2]/(8*Sqrt[2]) + Log[1 + Sq
rt[2]*x + x^2]/(8*Sqrt[2])

_______________________________________________________________________________________

Rubi [A]  time = 0.133232, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.846 \[ -\frac{\log \left (x^2-\sqrt{2} x+1\right )}{8 \sqrt{2}}+\frac{\log \left (x^2+\sqrt{2} x+1\right )}{8 \sqrt{2}}-\frac{1}{x}-\frac{1}{4} \tan ^{-1}(x)+\frac{\tan ^{-1}\left (1-\sqrt{2} x\right )}{4 \sqrt{2}}-\frac{\tan ^{-1}\left (\sqrt{2} x+1\right )}{4 \sqrt{2}}+\frac{1}{4} \tanh ^{-1}(x) \]

Antiderivative was successfully verified.

[In]  Int[1/(x^2*(1 - x^8)),x]

[Out]

-x^(-1) - ArcTan[x]/4 + ArcTan[1 - Sqrt[2]*x]/(4*Sqrt[2]) - ArcTan[1 + Sqrt[2]*x
]/(4*Sqrt[2]) + ArcTanh[x]/4 - Log[1 - Sqrt[2]*x + x^2]/(8*Sqrt[2]) + Log[1 + Sq
rt[2]*x + x^2]/(8*Sqrt[2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 21.0885, size = 87, normalized size = 0.85 \[ - \frac{\sqrt{2} \log{\left (x^{2} - \sqrt{2} x + 1 \right )}}{16} + \frac{\sqrt{2} \log{\left (x^{2} + \sqrt{2} x + 1 \right )}}{16} - \frac{\operatorname{atan}{\left (x \right )}}{4} - \frac{\sqrt{2} \operatorname{atan}{\left (\sqrt{2} x - 1 \right )}}{8} - \frac{\sqrt{2} \operatorname{atan}{\left (\sqrt{2} x + 1 \right )}}{8} + \frac{\operatorname{atanh}{\left (x \right )}}{4} - \frac{1}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**2/(-x**8+1),x)

[Out]

-sqrt(2)*log(x**2 - sqrt(2)*x + 1)/16 + sqrt(2)*log(x**2 + sqrt(2)*x + 1)/16 - a
tan(x)/4 - sqrt(2)*atan(sqrt(2)*x - 1)/8 - sqrt(2)*atan(sqrt(2)*x + 1)/8 + atanh
(x)/4 - 1/x

_______________________________________________________________________________________

Mathematica [A]  time = 0.0590497, size = 109, normalized size = 1.07 \[ -\frac{\sqrt{2} x \log \left (x^2-\sqrt{2} x+1\right )-\sqrt{2} x \log \left (x^2+\sqrt{2} x+1\right )+2 x \log (1-x)-2 x \log (x+1)+4 x \tan ^{-1}(x)-2 \sqrt{2} x \tan ^{-1}\left (1-\sqrt{2} x\right )+2 \sqrt{2} x \tan ^{-1}\left (\sqrt{2} x+1\right )+16}{16 x} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^2*(1 - x^8)),x]

[Out]

-(16 + 4*x*ArcTan[x] - 2*Sqrt[2]*x*ArcTan[1 - Sqrt[2]*x] + 2*Sqrt[2]*x*ArcTan[1
+ Sqrt[2]*x] + 2*x*Log[1 - x] - 2*x*Log[1 + x] + Sqrt[2]*x*Log[1 - Sqrt[2]*x + x
^2] - Sqrt[2]*x*Log[1 + Sqrt[2]*x + x^2])/(16*x)

_______________________________________________________________________________________

Maple [A]  time = 0.016, size = 79, normalized size = 0.8 \[ -{\frac{\ln \left ( -1+x \right ) }{8}}-{\frac{\arctan \left ( 1+x\sqrt{2} \right ) \sqrt{2}}{8}}-{\frac{\arctan \left ( x\sqrt{2}-1 \right ) \sqrt{2}}{8}}-{\frac{\sqrt{2}}{16}\ln \left ({\frac{1+{x}^{2}-x\sqrt{2}}{1+{x}^{2}+x\sqrt{2}}} \right ) }+{\frac{\ln \left ( 1+x \right ) }{8}}-{\frac{\arctan \left ( x \right ) }{4}}-{x}^{-1} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^2/(-x^8+1),x)

[Out]

-1/8*ln(-1+x)-1/8*arctan(1+x*2^(1/2))*2^(1/2)-1/8*arctan(x*2^(1/2)-1)*2^(1/2)-1/
16*2^(1/2)*ln((1+x^2-x*2^(1/2))/(1+x^2+x*2^(1/2)))+1/8*ln(1+x)-1/4*arctan(x)-1/x

_______________________________________________________________________________________

Maxima [A]  time = 1.59446, size = 126, normalized size = 1.24 \[ -\frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) + \frac{1}{16} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) - \frac{1}{16} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) - \frac{1}{x} - \frac{1}{4} \, \arctan \left (x\right ) + \frac{1}{8} \, \log \left (x + 1\right ) - \frac{1}{8} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-1/((x^8 - 1)*x^2),x, algorithm="maxima")

[Out]

-1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 1/8*sqrt(2)*arctan(1/2*sqrt(2
)*(2*x - sqrt(2))) + 1/16*sqrt(2)*log(x^2 + sqrt(2)*x + 1) - 1/16*sqrt(2)*log(x^
2 - sqrt(2)*x + 1) - 1/x - 1/4*arctan(x) + 1/8*log(x + 1) - 1/8*log(x - 1)

_______________________________________________________________________________________

Fricas [A]  time = 0.236241, size = 173, normalized size = 1.7 \[ -\frac{\sqrt{2}{\left (2 \, \sqrt{2} x \arctan \left (x\right ) - \sqrt{2} x \log \left (x + 1\right ) + \sqrt{2} x \log \left (x - 1\right ) - 4 \, x \arctan \left (\frac{1}{\sqrt{2} x + \sqrt{2} \sqrt{x^{2} + \sqrt{2} x + 1} + 1}\right ) - 4 \, x \arctan \left (\frac{1}{\sqrt{2} x + \sqrt{2} \sqrt{x^{2} - \sqrt{2} x + 1} - 1}\right ) - x \log \left (x^{2} + \sqrt{2} x + 1\right ) + x \log \left (x^{2} - \sqrt{2} x + 1\right ) + 8 \, \sqrt{2}\right )}}{16 \, x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-1/((x^8 - 1)*x^2),x, algorithm="fricas")

[Out]

-1/16*sqrt(2)*(2*sqrt(2)*x*arctan(x) - sqrt(2)*x*log(x + 1) + sqrt(2)*x*log(x -
1) - 4*x*arctan(1/(sqrt(2)*x + sqrt(2)*sqrt(x^2 + sqrt(2)*x + 1) + 1)) - 4*x*arc
tan(1/(sqrt(2)*x + sqrt(2)*sqrt(x^2 - sqrt(2)*x + 1) - 1)) - x*log(x^2 + sqrt(2)
*x + 1) + x*log(x^2 - sqrt(2)*x + 1) + 8*sqrt(2))/x

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**2/(-x**8+1),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.231379, size = 128, normalized size = 1.25 \[ -\frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{1}{8} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) + \frac{1}{16} \, \sqrt{2}{\rm ln}\left (x^{2} + \sqrt{2} x + 1\right ) - \frac{1}{16} \, \sqrt{2}{\rm ln}\left (x^{2} - \sqrt{2} x + 1\right ) - \frac{1}{x} - \frac{1}{4} \, \arctan \left (x\right ) + \frac{1}{8} \,{\rm ln}\left ({\left | x + 1 \right |}\right ) - \frac{1}{8} \,{\rm ln}\left ({\left | x - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-1/((x^8 - 1)*x^2),x, algorithm="giac")

[Out]

-1/8*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 1/8*sqrt(2)*arctan(1/2*sqrt(2
)*(2*x - sqrt(2))) + 1/16*sqrt(2)*ln(x^2 + sqrt(2)*x + 1) - 1/16*sqrt(2)*ln(x^2
- sqrt(2)*x + 1) - 1/x - 1/4*arctan(x) + 1/8*ln(abs(x + 1)) - 1/8*ln(abs(x - 1))